Publications by authors named "M M Koese"

Developments in battery technology are essential for the energy transition and need to follow the framework for safe-and-sustainable-by-design (SSbD) materials, chemicals, products, and processes as set by the EU. SSbD is a broad approach that ensures that chemicals/advanced materials/products/services are produced and used in a way to avoid harm to humans and the environment. Technical and policy-related literature was surveyed for battery technologies and recommendations were provided for a broad SSbD approach that remains firmly grounded in Life Cycle Thinking principles.

View Article and Find Full Text PDF

Annexins are a family of proteins that bind to phospholipids in a calcium-dependent manner. Earlier studies implicated annexin A6 (AnxA6) to inhibit secretion and participate in the organization of the extracellular matrix. We recently showed that elevated AnxA6 levels significantly reduced secretion of the extracellular matrix protein fibronectin (FN).

View Article and Find Full Text PDF

Endocytosis of activated growth factor receptors regulates spatio-temporal cellular signaling. In the case of the EGF receptor, sorting into multivesicular bodies (MVBs) controls signal termination and subsequently leads to receptor degradation in lysosomes. Annexin A1, a Ca(2+)-regulated membrane binding protein often deregulated in human cancers, interacts with the EGF receptor and is phosphorylated by internalized EGF receptor on endosomes.

View Article and Find Full Text PDF

Protein kinase Cα (PKCα) can phosphorylate the epidermal growth factor receptor (EGFR) at threonine 654 (T654) to inhibit EGFR tyrosine phosphorylation (pY-EGFR) and the associated activation of downstream effectors. However, upregulation of PKCα in a large variety of cancers is not associated with EGFR inactivation, and factors determining the potential of PKCα to downregulate EGFR are yet unknown. Here, we show that ectopic expression of annexin A6 (AnxA6), a member of the Ca(2+) and phospholipid-binding annexins, strongly reduces pY-EGFR levels while augmenting EGFR T654 phosphorylation in EGFR overexpressing A431, head and neck and breast cancer cell lines.

View Article and Find Full Text PDF

Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active.

View Article and Find Full Text PDF