Publications by authors named "M M Kater"

Auxin plays a pivotal role in plant development by activating AUXIN RESPONSE FACTORs (ARFs). Under low auxin levels, ARF activity is inhibited by interacting with Aux/IAAs. Aux/IAAs are degraded when the cellular auxin concentration increases, causing the release of ARF inhibition.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia, characterized by deposition of extracellular amyloid-beta (Aβ) aggregates and intraneuronal hyperphosphorylated Tau. Many AD risk genes, identified in genome-wide association studies (GWAS), are expressed in microglia, the innate immune cells of the central nervous system. Specific subtypes of microglia emerged in relation to AD pathology, such as disease-associated microglia (DAMs), which increased in number with age in amyloid mouse models and in human AD cases.

View Article and Find Full Text PDF

The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized.

View Article and Find Full Text PDF

Introduction: Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aβ) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear.

Methods: We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence.

View Article and Find Full Text PDF

Purpose: The individual vulnerability for stress-related sleep difficulties (eg, sleep reactivity) is known as a predisposing factor of insomnia in adults, yet relatively little is known about sleep reactivity in adolescence. The study goal is to determine factors related to sleep reactivity and to investigate whether sleep reactivity and related factors predict current and new incidents of insomnia in adolescents.

Patients And Methods: At baseline, 11-to-17-year-olds (N = 185, M = 14.

View Article and Find Full Text PDF