Publications by authors named "M M Hensler"

Article Synopsis
  • Hormone receptor-positive breast cancer shows limited response to immune checkpoint inhibitors (ICIs), but radiation therapy (RT) might enhance the effectiveness of ICIs by boosting immune responses.
  • The study explored the combination of hypofractionated RT with ICIs in a mouse model to see if targeting the primary tumor could delay the emergence of new tumors.
  • Results revealed that while focal RT could control primary tumor growth effectively, adding ICIs did not significantly improve overall survival, suggesting that controlling the primary tumor does not necessarily prevent the development of new cancer lesions.
View Article and Find Full Text PDF

Purpose: Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication.

Experimental Design: We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts.

View Article and Find Full Text PDF

Intratumoral tertiary lymphoid structures (TLSs) have been associated with improved outcome in various cohorts of patients with cancer, reflecting their contribution to the development of tumor-targeting immunity. Here, we demonstrate that high-grade serous ovarian carcinoma (HGSOC) contains distinct immune aggregates with varying degrees of organization and maturation. Specifically, mature TLSs (mTLS) as forming only in 16% of HGSOCs with relatively elevated tumor mutational burden (TMB) are associated with an increased intratumoral density of CD8 effector T (T) cells and TIM3PD1, hence poorly immune checkpoint inhibitor (ICI)-sensitive, CD8 T cells.

View Article and Find Full Text PDF

The profile of the antitumor immune response is an important factor determining patient clinical outcome. However, the influence of the tissue contexture on the composition of the tumor microenvironments of virally induced tumors is not clearly understood. Therefore, we analyzed the immune landscape of two HPV-associated malignancies: oropharyngeal squamous cell carcinoma (OPSCC) and squamous cell carcinoma of uterine cervix (CESC).

View Article and Find Full Text PDF

While type I interferon (IFN) is best known for its key role against viral infection, accumulating preclinical and clinical data indicate that robust type I IFN production in the tumor microenvironment promotes cancer immunosurveillance and contributes to the efficacy of various antineoplastic agents, notably immunogenic cell death inducers. Here, we report that malignant blasts from patients with acute myeloid leukemia (AML) release type I IFN via a Toll-like receptor 3 (TLR3)-dependent mechanism that is not driven by treatment. While in these patients the ability of type I IFN to stimulate anticancer immune responses was abolished by immunosuppressive mechanisms elicited by malignant blasts, type I IFN turned out to exert direct cytostatic, cytotoxic and chemosensitizing activity in primary AML blasts, leukemic stem cells from AML patients and AML xenograft models.

View Article and Find Full Text PDF