Publications by authors named "M M Heldring"

Various groups of chemicals that we encounter in every-day life are known to disrupt the endocrine system, such as estrogen mimics that can disturb normal cellular development and homeostasis. To understand the effect of estrogen on intracellular protein dynamics and how this relates to cell proliferation, we aimed to develop a quantitative description of transcription factor complexes and their regulation of cell cycle progression in response to estrogenic stimulation. We designed a mathematical model that describes the dynamics of three proteins, GREB1, PR and TFF1, that are transcriptionally activated upon binding of 17β-estradiol (E2) to estrogen receptor alpha (ERα).

View Article and Find Full Text PDF

Hazard assessment requires toxicity tests to allow deriving protective points of departure (PoDs) for risk assessment irrespective of a compound’s mode of action (MoA). The scope of in vitro test batteries (ivTB) needed to assess systemic toxicity is still unclear. We explored the protectiveness regarding systemic toxicity of an ivTB with a scope that was guided by previous findings from rodent studies, where examining six main targets, including liver and kidney, was sufficient to predict the guideline scope-based PoD with high probability.

View Article and Find Full Text PDF

In high dosages, acetaminophen (APAP) can cause severe liver damage, but susceptibility to liver failure varies across individuals and is influenced by factors such as health status. Because APAP-induced liver injury and recovery is regulated by an intricate system of intra- and extracellular molecular signaling, we here aim to quantify the importance of specific modules in determining the outcome after an APAP insult and of potential targets for therapies that mitigate adversity. For this purpose, we integrated hepatocellular acetaminophen metabolism, DNA damage response induction and cell fate into a multiscale mechanistic liver lobule model which involves various cell types, such as hepatocytes, residential Kupffer cells and macrophages.

View Article and Find Full Text PDF

Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2.

View Article and Find Full Text PDF

This paper highlights topics explored in a meeting of health grantmakers and mental health experts convened by America's HealthTogether in February 2006. The meeting's aim was to review the evidence on the burden of mental illness, explore the causes and consequences of a poorly functioning mental health care system, and stimulate discussion about philanthropy's role in responding to a national call for transformation of that system. The meeting identified several priorities for foundation work.

View Article and Find Full Text PDF