Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) in the vessel wall regulates blood pressure and cardiovascular hemodynamics. In this study, we generated conditional eNOS knock out (KO) mice characterized by a duplicated/inverted exon 2 flanked with two pairs of loxP regions (eNOS); a Cre-recombinase activity induces cell-specific reactivation of eNOS, as a result of a flipping of the inverted exon 2 (eNOS). This work aimed to test the efficiency of the Cre-mediated cell-specific recombination and the resulting eNOS expression/function.
View Article and Find Full Text PDFArginase catalyzes the hydrolysis of L-arginine into L-ornithine and urea. The two existing isoforms Arg1 and Arg2 show different cellular localizations and metabolic functions. Arginase activity is crucial for nitrogen detoxification in the urea cycle, synthesis of polyamines, and control of l-arginine bioavailability and nitric oxide production.
View Article and Find Full Text PDFIn the vasculature, nitric oxide (NO) is produced in the endothelium by endothelial nitric oxide synthase (eNOS) and is critical for the regulation of blood flow and blood pressure. Blood flow may also be regulated by the formation of nitrite-derived NO catalyzed by hemoproteins under hypoxic conditions. We sought to investigate whether nitrite administration may affect tissue perfusion and systemic hemodynamics in WT and eNOS knockout mice.
View Article and Find Full Text PDF