Rice is one of the most important crops in the world, and its production is severely affected by the rice blast disease caused by the fungus . Several major blast resistance genes and QTLs associated with blast resistance have been described and mostly identified in rice varieties. In this work, we report the obtention of a blast-resistant rice breeding line derived from crosses between the resistant variety CT13432 and the elite cultivar JSendra (highly susceptible to blast).
View Article and Find Full Text PDFIntroduction: Rice heavily relies on nitrogen fertilizers, posing environmental, resource, and geopolitical challenges. This study explores sustainable alternatives like animal manure and remote sensing for resource-efficient rice cultivation. It aims to assess the long-term impact of organic fertilization and remote sensing monitoring on agronomic traits, yield, and nutrition.
View Article and Find Full Text PDFDirect consequences of biological invasions on biodiversity and the environment have been largely documented. Yet collateral indirect effects mediated by changes in agri-environmental policies aimed at combating invasions remain little explored. Here we assessed the effects of recent changes in water management in rice farming, which are aimed at buffering the impact of the invasive apple snail ( Lamarck) on greenhouse gas emissions and diversity of waterbird communities.
View Article and Find Full Text PDFNutrient enrichment disrupts plant-animal interactions and ecosystem functioning globally. In woodland systems, the mechanisms of bottom-up turnover on plant-herbivore interactions remain understudied. Here, we performed a full-factorial field experiment to evaluate the interactive effects of nutrient addition (nitrogen, phosphorus, and/or potassium) on the assemblage of foliar herbivores and the interaction frequency with Berberis microphylla, a dominant shrub species in Patagonian woodlands.
View Article and Find Full Text PDFBackground: Arbuscular mycorrhizal (AM) fungi form symbiotic associations with roots in most land plants. AM symbiosis provides benefits to host plants by improving nutrition and fitness. AM symbiosis has also been associated with increased resistance to pathogen infection in several plant species.
View Article and Find Full Text PDF