Rev Sci Instrum
October 2013
Imaging plates from Fuji (BAS-SR, MS, and TR types) are phosphor films routinely used in ultra high intensity laser experiments. However, few data are available on the absolute IP response functions to ionizing particles. We have previously measured and modeled the IP response functions to protons.
View Article and Find Full Text PDFWe have measured the responses of Fuji MS, SR, and TR imaging plates (IPs) to protons with energies ranging from 0.6 to 3.2 MeV.
View Article and Find Full Text PDFWe present a stand-alone system to characterize the high-energy particles emitted in the interaction of ultrahigh intensity laser pulses with matter. According to the laser and target characteristics, electrons or protons are produced with energies higher than a few mega electron volts. Selected material samples can, therefore, be activated via nuclear reactions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2008
Fast adiabatic plasma heating of a thin solid target irradiated by a high intensity laser has been observed by an optical fast interferometry diagnostic. It is driven by the hot electron current induced by the laser plasma interaction at the front side of the target. Radial and longitudinal temperature profiles are calculated to reproduce the observed rear-side plasma expansion.
View Article and Find Full Text PDFWe present a protocol to characterize the high energy electron beam emitted in the interaction of an ultraintense laser with matter at intensities higher than 10(19) W cm(-2). The electron energies and angular distributions are determined as well as the total number of electrons produced above a 10 MeV threshold. This protocol is based on measurements with an electron spectrometer and nuclear activation techniques, combined with Monte Carlo simulations based on the GEANT3 code.
View Article and Find Full Text PDF