Publications by authors named "M Luz Fidalgo"

Adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) by ADAR1 is an essential modifier of the immunogenicity of cellular dsRNA. The role of MDA5 in sensing unedited cellular dsRNA and the downstream activation of type I interferon (IFN) signaling are well established. However, we have an incomplete understanding of pathways that modify the response to unedited dsRNA.

View Article and Find Full Text PDF

A novel approach to the fabrication of thin-film supported metal oxide membranes was investigated. Nanocoatings were obtained by the condensed layer deposition of TiO on tubular microporous supports, applying multiple consecutive layers of TiO/polyaniline. The surface, cross-sectional structure, and morphology of the materials were investigated by electron microscopy.

View Article and Find Full Text PDF

Objective: p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown.

View Article and Find Full Text PDF

Background And Aims: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied.

Approach And Results: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63.

View Article and Find Full Text PDF

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor.

View Article and Find Full Text PDF