Publications by authors named "M Lutterova"

Hypothermic preservation can increase hepatocyte sensitivity to various insults. Here we studied the hypothesis that hepatocytes are injured by manipulation with cold-preserved liver. Livers from Wistar rats were divided into two groups.

View Article and Find Full Text PDF

Kupffer cells (KC), resident macrophages of the liver, have been strongly implicated in lipopolysaccharide (LPS)-induced liver graft injury. However, our recent study showed that sizofiran (schizophyllan glucan) (SPG), which activates KC, did not influence cold ischemia-reperfusion liver injury of LPS-exposed rats. Here we investigated some mechanisms by which SPG does not aggravate LPS-enhanced cold ischemia-reperfusion rat liver injury.

View Article and Find Full Text PDF

We very recently showed (using a blood-free perfusion model) that cold preservation sensitized rat hepatocyte functions to rewarming ischemic injury and that the injury can be prevented by repleting high-energy adenylates in the liver by short-term oxygenated warm reperfusion. Here we investigated whether short-term reperfusion after the preservation period can improve hepatic graft function in a blood reperfusion model. Eighteen-hour cold-preserved rat livers either untreated (Group A) or pretreated by 30-min oxygenated warm reperfusion after preservation (Group B) were subjected to 20-min ischemic rewarming and then reperfused with blood.

View Article and Find Full Text PDF

Background/aim: University of Wisconsin (UW) solution has been proven able to prevent liver injury during cold ischemia. During rewarming ischemia, however, the efficacy of this solution in preserving hepatocyte function is unclear. The aim of the present study was to investigate to what extent UW solution protects rat liver during rewarming ischemia.

View Article and Find Full Text PDF

Although tumor necrosis factor-alpha has been implicated in liver injury after both warm ischemia- and cold ischemia-reperfusion, it is unclear whether reactivity of the liver to these stimuli is similar with regard to cytokine expression. Here we compare the effects of warm and cold ischemia on tumor necrosis factor-alpha expression and test the hypothesis that cold ischemia preceding warm ischemia causes overexpression of this cytokine. Rat livers were flushed out with University of Wisconsin solution and subjected to varying periods of warm ischemia, cold ischemia, or cold ischemia plus warm ischemia followed by reperfusion using a blood-free perfusion model.

View Article and Find Full Text PDF