Publications by authors named "M Lunzer"

Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including S-GTPγS functional and cAMP based assays.

View Article and Find Full Text PDF

Background And Purpose: This study evaluates the early clinical performance of the new Artisse Intrasaccular Device (Artisse ISD), a self-expandable intrasaccular flow diverter, for treating wide-necked aneurysms (WNAs). We report initial safety and efficacy outcomes in the first cohort of patients treated with this novel device.

Methods: Prospective clinical and radiological data were collected for all patients treated with the Artisse ISD at three Austrian neurovascular centers from July 2023 to August 2024.

View Article and Find Full Text PDF

Inorganic polyphosphates (polyPs) are energy-storing biopolymers synthesized by all three domains of life. PolyP accumulation has been well studied with respect to its role in stress response, but its role in dental disease has received less attention. Dental decay can be promoted by changes in pH as well as the chemical activity of ions such as phosphate in oral fluids at the enamel interface.

View Article and Find Full Text PDF

The concomitant epidemics of chronic pain and opioid misuse in the United States have led to a call for novel analgesics with limited abuse potential. Previously, we have shown that co-delivery of a novel combination targeting both μ- and δ-opioid receptors in the peripheral and central nervous systems can produce synergistic analgesia. Loperamide, a peripherally restricted μ-opioid agonist, and oxymorphindole, a δ-opioid receptor partial agonist, synergize in multiple mouse models of hyperalgesia.

View Article and Find Full Text PDF

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP).

View Article and Find Full Text PDF