We present a detailed analysis of the dynamical behavior of an inhomogeneous Burridge-Knopoff model, a simplified mechanical model of an earthquake. Regardless of the size of seismic faults, a soil element rarely has a continuous appearance. Instead, their surfaces have complex structures.
View Article and Find Full Text PDFSuperconductivity in two-dimensional materials has attracted considerable attention. A new material belonging to the family of Janus transition metal dichalcogenides with out-of-plane structural asymmetry has been recently found to show interesting physical and chemical properties. Using density functional theory and density functional perturbation theory, within the generalized gradient approximation with van der Waals correction, we performed a detailed investigation of the electronic structure, phonon dispersion, Eliashberg spectral function, and electron-phonon coupling of Janus MSSe bilayers (M = Mo or W) and the Janus MoSSe/WSSe heterostructure intercalated with alkali metals (Li, Na, and K) or alkaline earth metals (Mg, Ca, and Sr).
View Article and Find Full Text PDFBlue phosphorene is an interesting two-dimensional (2D) material, which has attracted the attention of researchers, due to its affluent physical and chemical properties. In recent years, it was discovered that the intercalation of alkali metals and alkaline earth metals in 2D materials may lead to conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. In this work, the electronic structure, phonon dispersion, Eliashberg spectral function, electron-phonon coupling (EPC), and the critical temperature of blue phosphorene bilayer intercalated by alkali metals (Li, and K) and alkaline earth metals (Ca, and Sr) for both AB and AC stacking orders are studied using the density functional theory and the density functional perturbation theory, within the generalized gradient approximation with van der Waals correction.
View Article and Find Full Text PDF