Publications by authors named "M Lostaglio"

We present a rigorous approach, based on the concept of continuous thermomajorization, to algorithmically characterize the full set of energy occupations of a quantum system accessible from a given initial state through weak interactions with a heat bath. The algorithm can be deployed to solve complex optimization problems in out-of-equilibrium setups and it returns explicit elementary control sequences realizing optimal transformations. We illustrate this by finding optimal protocols in the context of cooling, work extraction, and catalysis.

View Article and Find Full Text PDF

A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations to a universal set by the addition of "magic" quantum states. In this context, we develop a general framework to discuss the value of the available, nonideal magic resources, relative to those ideally required. We single out a quantity, the quantum-assisted robustness of magic (QROM), which measures the overhead of simulating the ideal resource with the nonideal ones through quasiprobability-based methods.

View Article and Find Full Text PDF

I identify a fundamental difference between classical and quantum dynamics in the linear response regime by showing that the latter is, in general, contextual. This allows me to provide an example of a quantum engine whose favorable power output scaling unavoidably requires nonclassical effects in the form of contextuality. Furthermore, I describe contextual advantages for local metrology.

View Article and Find Full Text PDF

The study of thermal operations allows one to investigate the ultimate possibilities of quantum states and of nanoscale thermal machines. Whilst fairly general, these results typically do not apply to continuous variable systems and do not take into account that, in many practically relevant settings, system-environment interactions are effectively bilinear. Here we tackle these issues by focusing on Gaussian quantum states and channels.

View Article and Find Full Text PDF

I give a self-contained introduction to the resource theory approach to quantum thermodynamics. I will introduce in an elementary manner the technical machinery necessary to unpack and prove the core statements of the theory. The topics covered include the so-called 'many second laws of thermodynamics', thermo-majorisation and symmetry constraints on the evolution of quantum coherence.

View Article and Find Full Text PDF