Publications by authors named "M Lossky"

The divergently transcribed yolk protein genes (Yp1 and Yp2) of Drosophila melanogaster are expressed only in adult females, in fat body tissue and in ovarian follicle cells. Using an in vitro transcription assay, we have identified a single 12-bp DNA element that activates transcription from the promoters of both Yp genes. In vivo, this regulatory element is tissue specific: it activates transcription of Yp1 and Yp2 reporter genes in follicle cells but has no detectable effect in fat body or other tissues.

View Article and Find Full Text PDF

Nuclear pre-mRNA splicing in Saccharomyces cerevisiae, as in higher eukaryotes, occurs in large RNA-protein complexes called spliceosomes. The small nuclear RNA components, U1, U2, U4, U5, and U6, have been extensively studied; however, very little is known about the protein components of yeast spliceosomes. Here we use antibodies against the precursor RNA processing protein PRP8, a protein component of the U5 small nuclear ribonucleoprotein particle, to detect its association with spliceosomes throughout the splicing reaction and in a post-splicing complex containing the excised intron.

View Article and Find Full Text PDF

While there are some differences in the nuclear pre-mRNA splicing machineries of Saccharomyces cerevisiae and higher eukaryotic cells, it is apparent that the fundamental mechanism of this reaction is highly conserved. S. cerevisiae is, therefore, an attractive organism for the study of splicing, since it is amenable to classical and molecular genetics as well as traditional biochemical methods.

View Article and Find Full Text PDF

Strains of Saccharomyces cerevisiae that bear the temperature-sensitive mutation rna8-1 are defective in nuclear pre-mRNA splicing at the restrictive temperature (36 degrees C), suggesting that the RNA8 gene encodes a component of the splicing machinery. The RNA8 gene was cloned by complementation of the temperature-sensitive growth defect of an rna8-1 mutant strain. Integrative transformation and gene disruption experiments confirmed the identity of the cloned DNA and demonstrated that the RNA8 gene encodes an essential function.

View Article and Find Full Text PDF

The RNA8 gene of Saccharomyces cerevisiae encodes an unusually large (260 kd) protein required for pre-mRNA splicing. Immunological procedures have been used to demonstrate that the RNA8 protein is in stable association with the small nuclear RNAs snR7L and snR7S, which are also known to be required for splicing and which are present in spliceosomal complexes. RNA8 is also involved in an ATP-dependent association with two other small nuclear RNAs, snR14 and snR6.

View Article and Find Full Text PDF