The demographic shift has increased the demand for surgical interventions to address age-related degenerative diseases, such as spinal fusion. Accurate placement of pedicle screws, crucial for successful spinal fusion, varies widely with physician experience. Integrating tissue sensing into spine surgical instruments allows intraoperative examination of tissue properties, providing surgeons with additional information to prevent screw misplacement.
View Article and Find Full Text PDFIn brain tumor surgery, maximal tumor resection is typically desired. This is complicated by infiltrative tumor cells which cannot be visually distinguished from healthy brain tissue. Optical methods are an emerging field that can potentially revolutionize brain tumor surgery through intraoperative differentiation between healthy and tumor tissues.
View Article and Find Full Text PDFDiffuse Reflectance Spectroscopy (DRS) can provide tissue feedback for pedicle screw placement in spine surgery, yet the integration of fiber optics into the tip of the pedicle probe, a device used to pierce through bone, is challenging, since the optical probing depth and signal-to-noise ratio (SNR) are affected negatively compared to those of a blunt DRS probe. Through Monte Carlo simulations and optical phantom experiments, we show how differences in the shape of the instrument tip influence the acquired spectrum. Our findings demonstrate that a single bevel with an angle of 30∘ offers a solution to anticipate cortical breaches during pedicle screw placement.
View Article and Find Full Text PDFThe fermentation process of milk to yoghurt using Lactobacillus delbrueckii subsp. bulgaricus in co-culture with Streptococcus thermophilus is hallmarked by the breakdown of lactose to organic acids such as lactate. This leads to a substantial decrease in pH - both in the medium, as well as cytosolic.
View Article and Find Full Text PDFAccuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches.
View Article and Find Full Text PDF