We propose an integrated resonant structure to enhance squeezing by dual-pump spontaneous four-wave mixing (SFWM) while simultaneously suppressing parametric noise due to parasitic processes. The structure relies on a resonant interferometric coupler that allows one to engineer the field enhancement on-demand in the spectral region of interest. We analyze the different configurations in which the structure can operate, and we calculate the generated squeezing.
View Article and Find Full Text PDFIn this Letter, we theoretically study spontaneous parametric downconversion (SPDC) in a periodically poled structure composed of two linearly uncoupled resonators that are nonlinearly coupled via a Mach-Zehnder interferometer. The device does not require dispersion engineering to achieve efficient doubly resonant SPDC, and, unlike the case of a single resonator, one can reconfigure the system to generate photon pairs over a bandwidth of hundreds of nm. We consider the case of SPDC pumped at 775 nm in a periodically poled lithium niobate (PPLN) device compatible with up-to-date technological platforms.
View Article and Find Full Text PDFWe measure the joint temporal intensity of signal and idler photon pairs generated by spontaneous four-wave mixing in a silicon nitride microresonator by time-resolved coincidence detection. This technique can be applied to any high-Q optical cavity whose photon lifetime exceeds the duration of the pump pulse. We tailor the temporal correlation of photon pairs by using a resonant interferometric coupler, a device that allows us to independently tune the quality factors of the pump and signal and idler resonances.
View Article and Find Full Text PDFWe study the role of topological singularities like Bound States in a Continuum (BICs) or Circularly Polarized States (CPSs) in determining ellipticity of the far-field polarization in dielectric metasurfaces. Using finite-difference time-domain as well as rigorous coupled-wave analysis simulations, we determine the behavior of the Stokes parameter S in the whole k space above the light cone, with special regard to the region close to the singularities. Moreover, we clarify the relation between the topological singularities and the circular dichroism in reflectivity.
View Article and Find Full Text PDFWe demonstrate an integrated source of frequency-entangled photon pairs on a silicon photonics chip. The emitter has a coincidence-to-accidental ratio exceeding 10. We prove entanglement by showing two-photon frequency interference with a visibility of 94.
View Article and Find Full Text PDF