Publications by authors named "M Linja"

Aims: Neutrophil cytosolic factor 1 (NCF1) is a key regulatory component of the phagocytic NOX2 complex, which produces reactive oxygen species (ROS). Polymorphism of the Ncf1 gene is associated with increased arthritis severity. In this study, we generated targeted Ncf1 knock-in mice with inducible Ncf1 expression and determined the critical time window during which the NOX2-derived ROS protect the mice from arthritis.

View Article and Find Full Text PDF

Aims: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the phagocyte reactive oxygen species (ROS)-producing NOX2 enzyme complex and characterized by recurrent infections associated with hyperinflammatory and autoimmune manifestations. A translational, comparative analysis of CGD patients and the corresponding ROS-deficient Ncf1(m1J) mutated mouse model was performed to reveal the molecular pathways operating in NOX2 complex deficient inflammation.

Results: A prominent type I interferon (IFN) response signature that was accompanied by elevated autoantibody levels was identified in both mice and humans lacking functional NOX2 complex.

View Article and Find Full Text PDF

Androgen receptor (AR) is known to be overexpressed in castration-resistant prostate cancer. To interrogate the functional significance of the AR level, we established two LNCaP cell sublines expressing in a stable fashion two to four times (LNCaP-ARmo) and four to six times (LNCaP-ARhi) higher level of AR than the parental cell line expressing the empty vector (LNCaP-pcDNA3.1).

View Article and Find Full Text PDF

Activating gene mutations, gene amplifications and overexpressed proteins may be useful as targets for novel therapies. Alterations at chromosome locus 4q12 are associated with gliomas and the region harbors the receptor tyrosine kinase gene KIT, which is frequently amplified in gliomas, and also overexpressed in a subset of gliomas. KIT and its ligand stem cell factor are widely expressed in embryonic and adult mouse brain, and they play a role in many signal transduction pathways involved in cellular proliferation, differentiation and cancer cell metastasis.

View Article and Find Full Text PDF