Background: The prevalence of tree nut allergy has increased worldwide, and cashew has become one of the most common food allergens. More critically, cashew allergy is frequently associated with severe anaphylaxis. Despite the high medical need, no approved treatment is available and strict avoidance and preparedness for prompt treatment of allergic reactions are considered dual standard of care.
View Article and Find Full Text PDFThe skin is an immune organ comprised of a large network of antigen-presenting cells such as dendritic cells, making it an attractive target for the development of new vaccines and immunotherapies. Recently, we developed a new innovative and non-invasive vaccination method without adjuvant based on epicutaneous vaccine patches on which antigen forms a dry deposit. Here we describe in mice a method for potentiating the efficacy of our epicutaneous vaccination approach using a minimally invasive and epidermis-limited skin preparation based on laser-induced micro-perforation.
View Article and Find Full Text PDFBackground: Epicutaneous immunotherapy (EPIT) is a promising method for treating food allergies. In animal models, EPIT induces sustained unresponsiveness and prevents further sensitization mediated by Tregs. Here, we elucidate the mechanisms underlying the therapeutic effect of EPIT, by characterizing the kinetics of DNA methylation changes in sorted cells from spleen and blood and by evaluating its persistence and bystander effect compared to oral immunotherapy (OIT).
View Article and Find Full Text PDFAllergen-specific immunotherapy has been proposed as an attractive strategy to actively treat food allergy using the following three different immunotherapy routes: oral (OIT), sublingual (SLIT) and epicutaneous (EPIT) immunotherapy. Regulatory T cells (Tregs) have been shown to have a pivotal role in the mechanisms of immunotherapy. The aim of this study was to compare the phenotype and function of Tregs induced in peanut-sensitized BALB/c mice using these three routes of treatment.
View Article and Find Full Text PDFBackground: Allergy to cow's milk increases the risk of sensitization to other foods in young children.
Objectives: We sought to evaluate the effect of early epicutaneous immunotherapy (EPIT) on further sensitization to peanut or house dust mite (HDM) in a murine model of sensitization to cow's milk.
Methods: BALB/c mice orally sensitized to milk were epicutaneously treated with a Viaskin patch (DBV Technologies) loaded with milk proteins for 8 weeks.