Blood-based biomarkers that reliably indicate disease activity in the intestinal tract are an important unmet need in the management of patients with IBD. Extracellular vesicles (EVs) are cell-derived membranous microparticles, which reflect the cellular and functional state of their site of site of origin. As ultrasound waves may lead to molecular shifts of EV contents, we hypothesized that application of ultrasound waves on inflamed intestinal tissue in IBD may amplify the inflammation-specific molecular shifts in EVs like altered EV-miRNA expression, which in turn can be detected in the peripheral blood.
View Article and Find Full Text PDFAberrant CD4 T cell reactivity against intestinal microorganisms is considered to drive mucosal inflammation in inflammatory bowel diseases. The disease-relevant microbial species and the corresponding microorganism-specific, pathogenic T cell phenotypes remain largely unknown. In the present study, we identified common gut commensal and food-derived yeasts, as direct activators of altered CD4 T cell reactions in patients with Crohn's disease (CD).
View Article and Find Full Text PDFBackground: Inflammatory bowel disease (IBD) care and education might differ around Europe. Therefore, we conducted this European Variation In IBD PracticE suRvey (VIPER) to investigate potential differences between countries.
Methods: This trainee-initiated survey, run through SurveyMonkey®, consisted of 47 questions inquiring basic demographics, IBD training, and clinical care.
Frequency comb synthesized microwaves have been so far realized with tabletop systems, operated in well-controlled environments. Here, we demonstrate state-of-the-art ultrastable microwave synthesis with a compact rack-mountable apparatus. We present absolute phase noise characterization of a 12 GHz signal using an ultrastable laser at $\sim{194}\;{\rm THz}$∼194THz and an Er:fiber comb divider, obtaining $ - {83}\;{\rm dBc/Hz}$-83dBc/Hz at 1 Hz and $ \lt - {166}\;{\rm dBc/Hz}$<-166dBc/Hz for offsets greater than 5 kHz.
View Article and Find Full Text PDFBackground: An increases in plasma membrane permeability is part of the acute pathology of traumatic brain injury and may be a function of excessive membrane force. This membrane damage, or mechanoporation, allows non-specific flux of ions and other molecules across the plasma membrane, and may ultimately lead to cell death. The relationships among tissue stress and strain, membrane permeability, and subsequent cell degeneration, however, are not fully understood.
View Article and Find Full Text PDF