Cilia are ubiquitous and highly conserved extensions that endow the cell with motility and sensory functions. They were present in the first eukaryotes and conserved throughout evolution (Carvalho-Santos et al., 2011).
View Article and Find Full Text PDFThe cilium is a cell extension forming a distinct compartment of eukaryotic cell body with a complex and dynamic structure. This structure is highly conserved across species and ensures various functions as sensory and motility. In humans, ciliary dysfunction results in diseases (ciliopathies) that can affect all organs.
View Article and Find Full Text PDFCiliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms.
View Article and Find Full Text PDFCilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella.
View Article and Find Full Text PDF