Publications by authors named "M Lek"

Background: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.

Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.

View Article and Find Full Text PDF
Article Synopsis
  • * The study shows that heteroplasmy is more prevalent in people with clonal hematopoiesis, especially when there are multiple mutations or certain types of mutations present.
  • * Including heteroplasmy in risk assessment models enhances the ability to identify high-risk individuals for myeloid neoplasms, indicating its potential as a significant biomarker for these conditions.
View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features.

View Article and Find Full Text PDF

Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers.

View Article and Find Full Text PDF

Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants.

View Article and Find Full Text PDF