In view of the pivotal role played by the diversity of fatty acid-derived oxy-products in a vast array of physiological processes, precise knowledge about the molecular principles dictating substrate specificity and regioselectivity in P450-catalyzed oxidative attack on the distinctly structured carbon chains of the monocarboxylic acids is of paramount importance. Based on a general, CYP102A1-related construct, the majority of prospective key determinants participating in fatty acid recognition/binding were found to cluster near the distal heme face made up by the helical B', F, G and I tetrad as well as the B'-C interhelical loop and certain beta-sheet segments. Most of the contact sites examined show a frequency of conservation <10%, hinting at the requirement of some degree of conformational flexibility.
View Article and Find Full Text PDFCytochrome P450 2B4 (CYP2B4) lacking the NH(2)-terminal signal anchor sequence (2-27) was used to study the impact of replacement of histidine with alanine at position 285 on electron transfer from NADPH-cytochrome P450 reductase (P450R). Absorption and circular dichroism spectra of the recombinant hemoproteins indicated that amino acid substitution neither grossly perturbed the geometry of the immediate heme vicinity nor the global polypeptide backbone folding. Fitting of the initial-velocity patterns of P450R-directed reduction of the ferric CYP2B4 (2-27) forms to the Michaelis-Menten kinetics revealed an approximately 3.
View Article and Find Full Text PDFA cytochrome P450 2B4 (CYP2B4) model was used to select key residues supposed to serve in interactions with NADPH-cytochrome P450 reductase (P450R). Eight amino acid residues located on the surface of the hemoprotein were chosen for mutagenesis experiments with CYP2B4(Delta2-27) lacking the NH(2)-terminal signal anchor sequence. The mutated proteins were expressed in Escherichia coli, purified, and characterized by EPR- and CD-spectral analysis.
View Article and Find Full Text PDFMitochondrial adrenodoxin (Adx) was found to cross-react with microsomal cytochrome P450 2B4 (CYP2B4) as the terminal electron acceptor. When compared with NADPH-cytochrome P450 reductase (P450R), the natural redox partner of CYP2B4, Adx was less efficient both in transferring the first electron and in coupling the system. The ferredoxin yielded an unusual reverse type I spectral change with low-spin CYP2B4, which underwent transformation to a typical type I optical perturbation upon deletion of the signal anchor sequence (Delta2-27) of the hemoprotein.
View Article and Find Full Text PDFThe optical biosensor study of interaction between microsomal proteins-NADPH-cytochrome P450 reductase, cytochrome P450 2B4, and cytochrome b5-was carried out in the monomeric reconstituted system in the absence of phospholipids. The formation of individual complexes was kinetically characterized and their association and dissociation rate constants were determined. The association rate constants for the complexes formed were found to be close to the diffusiion limit-(0.
View Article and Find Full Text PDF