Organocobalt complexes represent a versatile tool in organic synthesis as they are important intermediates in Pauson-Khand, Friedel-Crafts, and Nicholas reactions. Herein, a single-molecule-level investigation addressing the formation of an organocobalt complex at a solid-vacuum interface is reported. Deposition of 4,4'-(ethyne-1,2-diyl)dibenzonitrile and Co atoms on the Ag(111) surface followed by annealing resulted in genuine complexes in which single Co atoms laterally coordinated to two carbonitrile groups undergo organometallic bonding with the internal alkyne moiety of adjacent molecules.
View Article and Find Full Text PDFSingle-molecule chemistry with a scanning tunneling microscope has preponderantly been performed on metal surfaces. The molecule-metal hybridization, however, is often detrimental to genuine molecular properties and obscures their changes upon chemical reactions. We used graphene on Ir(111) to reduce the coupling between Ir(111) and adsorbed phthalocyanine molecules.
View Article and Find Full Text PDFIron phthalocyanine (FePc) is adsorbed to graphene on Ir(111) at cryogenic temperature. In addition to mobile FePc with four lobes, imaging and spectroscopy with a scanning tunneling microscope reveal immobile molecules that exhibit fewer lobes. A reversible transformation between four- and three-lobed molecules has been induced by current injection.
View Article and Find Full Text PDFIn this report we address the question of whether some chiral molecules have a probability of being detected in the interstellar medium (ISM). To this end we rely on the Minimum Energy Principle which states that the most abundant isomer of a given generic formula should be that of lowest energy. The relative stability of the chiral molecules with respect to the other possible species of the same chemical formula are calculated by means of quantum simulations based on density functional theory (DFT).
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2010
Finding complex organic molecules in the interstellar medium (ISM) is a major concern for understanding the possible role of interstellar organic chemistry in the synthesis of prebiotic species. The present interdisciplinary report is a prospective study aimed at helping detection of heteroaromatic compounds or at least of some of their isomers in the ISM. The thermodynamic stabilities of the C(4)H(5)N, C(4)H(4)O, C(4)H(4)S families were calculated using density functional theory (DFT).
View Article and Find Full Text PDF