The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.
View Article and Find Full Text PDFExhausted T cells (TEX) in cancer and chronic viral infections undergo metabolic and epigenetic remodeling, impairing their protective capabilities. However, the impact of nutrient metabolism on epigenetic modifications that control TEX differentiation remains unclear. We showed that TEX cells shifted from acetate to citrate metabolism by downregulating acetyl-CoA synthetase 2 (ACSS2) while maintaining ATP-citrate lyase (ACLY) activity.
View Article and Find Full Text PDFBackground: There is concern regarding potential long-term cardiotoxicity with systemic distribution of metals in total joint arthroplasty (TJA) patients.
Aim: To determine the association of commonly used implant metals with echocardiographic measures in TJA patients.
Methods: The study comprised 110 TJA patients who had a recent history of high chromium, cobalt or titanium concentrations.
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF).
View Article and Find Full Text PDFBackground: Supplemental oxygen (SO) potentiates opioid-induced respiratory depression (OIRD) in experiments on healthy volunteers. Our objective was to examine the relationship between SO and OIRD in patients on surgical units.
Methods: This post-hoc analysis utilized a portion of the observational PRediction of Opioid-induced respiratory Depression In patients monitored by capnoGraphY (PRODIGY) trial dataset (202 patients, two trial sites), which involved blinded continuous pulse oximetry and capnography monitoring of postsurgical patients on surgical units.