We previously identified the bisbenzimide Hoechst 33342 (H42) as a potent multi-stage inhibitor of the prototypic poxvirus, the vaccinia virus (VACV), and several parapoxviruses. A recent report showed that novel bisbenzimide compounds similar in structure to H42 could prevent human cytomegalovirus replication. Here, we assessed whether these compounds could also serve as poxvirus inhibitors.
View Article and Find Full Text PDFThe coding-complete genomes of laboratory vaccinia virus strain Copenhagen and the Copenhagen-derived deletion strain, vP811, were determined by short-read sequencing. Relative to the NCBI reference genome M35027, seven common coding differences were revealed, including an intact copy of the vaccinia virus immunomodulator A46R in both Cop and vP811.
View Article and Find Full Text PDFProteins can be separated according to their size by gel electrophoresis and further analyzed by Western blotting. The proteins can be transferred to a membrane made of nitrocellulose or polyvinylidene fluoride (PVDF), which results in a replica of the protein's separation patterns. The proteins on the membrane can be detected by specific antibodies followed by visualization either on the membrane itself, on film, or by CCD cameras.
View Article and Find Full Text PDFBacteriophages encoding anti-CRISPR proteins (Acrs) must cooperate to overcome phage resistance mediated by the bacterial immune system CRISPR-Cas, where the first phage blocks CRISPR-Cas immunity in order to allow a second Acr phage to successfully replicate. However, in nature, bacteria are frequently not pre-immunized, and phage populations are often not clonal, exhibiting variations in Acr presence and strength. We explored how interactions between Acr phages and initially sensitive bacteria evolve, both in the presence and absence of competing phages lacking Acrs.
View Article and Find Full Text PDFSome phages encode anti-CRISPR (acr) genes, which antagonize bacterial CRISPR-Cas immune systems by binding components of its machinery, but it is less clear how deployment of these acr genes impacts phage replication and epidemiology. Here, we demonstrate that bacteria with CRISPR-Cas resistance are still partially immune to Acr-encoding phage. As a consequence, Acr-phages often need to cooperate in order to overcome CRISPR resistance, with a first phage blocking the host CRISPR-Cas immune system to allow a second Acr-phage to successfully replicate.
View Article and Find Full Text PDF