Publications by authors named "M Landis"

Gas-phase organic acids are ubiquitous in the atmosphere with mixing ratios of several species, such as formic acid and acetic acid, often as high as several parts per billion by volume (ppbv). Organic acids are produced via photochemical reactions and are also directly emitted from various sources, including combustion, microbial activity, vegetation, soils, and ruminants. We present measurements of gas-phase formic, acetic, propionic, pyruvic, and pentanoic acids from a site near Boise, Idaho, in August 2019 made by iodide-adduct chemical ionization mass spectrometry (CIMS).

View Article and Find Full Text PDF

The spatial and environmental features of regions where clades are evolving are expected to impact biogeographic processes such as speciation, extinction, and dispersal. Any number of regional features (such as elevation, distance, area, etc.) may be directly or indirectly related to these processes.

View Article and Find Full Text PDF

Air sensors can provide valuable non-regulatory and supplemental data as they can be affordably deployed in large numbers and stationed in remote areas far away from regulatory air monitoring stations. Air sensors have inherent limitations that are critical to understand before collecting and interpreting the data. Many of these limitations are mechanistic in nature, which will require technological advances.

View Article and Find Full Text PDF

Pine needles represent an important fuel source in coniferous forest systems in the western United States. During forest fires, they can be easily ignited and help sustain flame on the ground. In this study, a comprehensive chemical analysis was conducted to examine oxygenated organic compounds (OOCs) present in PM formed from burning dry and moist ponderosa pine needles (PPN) in the presence and absence of fine woody debris (FWD).

View Article and Find Full Text PDF
Article Synopsis
  • Anthropogenic activities release around 2,000 metric tons of mercury annually, affecting remote ecosystems and leading to inconsistencies in reported emissions and atmospheric concentrations in the Northern Hemisphere.
  • Despite reported increases in mercury emissions over the past 30 years, data analysis shows a declining trend in atmospheric mercury levels, indicating that actual emissions must have decreased significantly, contradicting existing inventories.
  • By using statistical modeling of data from 51 monitoring stations, the study highlights a decline in mercury concentrations from 2005 to 2020, suggesting that reductions in local emissions, rather than reemissions of legacy mercury, are primarily responsible for these trends and raising questions about the reliability of current emission inventories.
View Article and Find Full Text PDF