We designed a study with the objective to determine the long-term radiation effects of gamma rays, originating from a single shot of Co at a dose of 2 Gy on the 7-month-old male mice of the ICR line in 30 days after the irradiation. The aim of this study was to characterize the behavior of animals using the Open Field test, immuno-hematological status, and morpho-functional changes in the central nervous system of mice. Irradiated animals displayed significantly different behavior in the OF in comparison with the control group.
View Article and Find Full Text PDFNeural Regen Res
September 2022
Ionizing radiation caused by medical treatments, nuclear events or even space flights can irreversibly damage structure and function of brain cells. That can result in serious brain damage, with memory and behavior disorders, or even fatal oncologic or neurodegenerative illnesses. Currently used treatments and drugs are mostly targeting biochemical processes of cell apoptosis, radiation toxicity, neuroinflammation, and conditions such as cognitive-behavioral disturbances or others that result from the radiation insult.
View Article and Find Full Text PDFThe aim of this research was to study behavioral reactions and morphological changes in the brain of adult female Sprague Dawley rats after exposure to 170 MeV and 70 MeV protons and gamma radiation (60Co) at a dose of 1 Gy. The analysis of the behavioral reactions in the T-maze showed that exposure to ionizing radiation with different LETs led to an increase in number of repeated entries into the arms of the maze in the spontaneous alternation test. In the Open Field test a decrease in overall motor activity in the group of irradiated animals (70 MeV protons at the Bragg peak) was observed.
View Article and Find Full Text PDFThis research was aimed at examining the effect of piracetam on behavioral reactions and morphological changes in the brain of adult rats after fractionated gamma irradiation with a total dose of 5 Gy. Fractionated gamma irradiation led to a decrease in freezing behavior in the Open Field and leukopenia. These behavioral and hematological disorders were accompanied by a cell decrease in the cross-sectional area of granular layer of the dentate gyrus, an increase in the number of Fluoro Jade B-positive cells, and an increase in the number of irreversible changes in the cerebral cortex.
View Article and Find Full Text PDF