Provirus integration site for Moloney murine leukemia virus (PIM) family serine/threonine kinases perform protumorigenic functions in hematologic malignancies and solid tumors by phosphorylating substrates involved in tumor metabolism, cell survival, metastasis, inflammation, and immune cell invasion. However, a comprehensive understanding of PIM kinase functions is currently lacking. Multiple small-molecule PIM kinase inhibitors are currently being evaluated as cotherapeutics in patients with cancer.
View Article and Find Full Text PDFRNA Polymerase I (Pol I) has recently been recognized as a cancer therapeutic target. The activity of this enzyme is essential for ribosome biogenesis and is universally activated in cancers. The enzymatic activity of this multi-subunit complex resides in its catalytic core composed of RPA194, RPA135, and RPA12, a subunit with functions in RNA cleavage, transcription initiation and elongation.
View Article and Find Full Text PDFRNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled.
View Article and Find Full Text PDFCancer cells require robust ribosome biogenesis to maintain rapid cell growth during tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials.
View Article and Find Full Text PDF