The chromatographic recovery of monosaccharides and lignin from lignocellulosic hydrolysates was studied at laboratory and pilot scale. A weak cation-exchange resin in sodium form and a water eluent gave good separation efficiency. Scale-dependent phenomena, especially viscous fingering resulting from the large viscosity and density differences between the hydrolysate feed and eluent, were observed.
View Article and Find Full Text PDFThe selectivity of nanoporous manganese oxides for some alkali and transition metals over calcium and magnesium was studied. Two tunnel-structured oxides (OMS-1 and OMS-2) were synthesized by means of a hydrothermal route. Competitive uptake of metals and acid was studied using batch kinetic measurements at different metal ion concentrations.
View Article and Find Full Text PDFA dynamic model has been developed for chromatographic separation of mixed electrolyte solutions with non-ionic nanoporous adsorbents. The thermodynamic equilibrium condition at the pore entrance is written in terms of mixing, electrostatic and size-exclusion effects. The model is tested against experimental data measured with three binary mixtures on hypercrosslinked polystyrene and nanoporous carbon.
View Article and Find Full Text PDFWe have been able to assign the human catechol-O-methyltransferase gene (COMT) to chromosome 22q11.2 by using Southern blot analysis of panels of somatic cell hybrids and chromosomal in situ hybridization. Furthermore, Southern blot analysis of DNA from blood and bone marrow samples of a patient with chronic myeloid leukemia (CML), having an extra Philadelphia chromosome (Ph1) in addition to the one produced by the reciprocal translocation between chromosomes 9 and 22, showed increased COMT and BCR gene dosage as compared to DNAs originating from CML patients with only one Ph1 chromosome or from chromosomally normal individuals.
View Article and Find Full Text PDF