We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state-one of the key signatures of HSF.
View Article and Find Full Text PDFThe relaxation behaviour of isolated quantum systems taken out of equilibrium is among the most intriguing questions in many-body physics. Quantum systems out of equilibrium typically relax to thermal equilibrium states by scrambling local information and building up entanglement entropy. However, kinetic constraints in the Hamiltonian can lead to a breakdown of this fundamental paradigm owing to a fragmentation of the underlying Hilbert space into dynamically decoupled subsectors in which thermalization can be strongly suppressed.
View Article and Find Full Text PDF