This article uses the theoretical framework of the networked public to understand the dynamics of online harassment of public health professionals. Coauthors draw on their experiences with health communication on social media, in a local public health department, and in news media to illustrate the utility of this framework. Their stories also highlight the need to build a more proactive approach to online harassment in public health.
View Article and Find Full Text PDFOsteosarcoma prognosis has remained unchanged for the past three decades. In both humans and canines, treatment is limited to excision, radiation, and chemotherapy. Chemoresistance is the primary cause of treatment failure, and the trajectory of tumor evolution while under selective pressure from treatment is thought to be the major contributing factor in both species.
View Article and Find Full Text PDFOsteosarcoma is the most common type of bone cancer in dogs and humans, with significant numbers of patients experiencing treatment failure and disease progression. In our search for new approaches to treat osteosarcoma, we previously detected multiple chaperone proteins in the surface-exposed proteome of canine osteosarcoma cells. In the present study, we characterized expression of representative chaperones and find evidence for stress adaptation in canine osteosarcoma cells relative to osteogenic progenitors from normal bone.
View Article and Find Full Text PDFBackground: Osteosarcoma patients often experience poor outcomes despite chemotherapy treatment, likely due in part to various mechanisms of tumor cell innate and/or acquired drug resistance. Exosomes, microvesicles secreted by cells, have been shown to play a role in drug resistance, but a comprehensive protein signature relating to osteosarcoma carboplatin resistance has not been fully characterized.
Methods: In this study, cell lysates and exosomes from two derivatives (HMPOS-2.
Background: Osteosarcoma strikes hundreds of people each year, of both advanced and younger ages, and is often terminal. Like many tumor types, these bone tumors will frequently undergo a neuroendocrine transition, utilizing autocrine and/or paracrine hormones as growth factors and/or promoters of angiogenesis to facilitate progression and metastasis. While many of these factors and their actions on tumor growth are characterized, some tumor-derived neuropeptides remain unexplored.
View Article and Find Full Text PDF