Publications by authors named "M L Vallano"

A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis.

View Article and Find Full Text PDF

Background: Aneurysmal subarachnoid hemorrhage (SAH) is a leading cause of death and disability and is often complicated by cerebral vasospasm (CV). Conventional management to prevent CV includes bedrest; however, inactivity places the patient at risk for nonneurological complications. We investigated the effect of mild exercise after SAH in clinical and laboratory settings.

View Article and Find Full Text PDF

NMDA receptors (NMDAR) contribute to neuronal development throughout the CNS. However, their mode(s) of activation preceding synaptic maturation is unclear, as they are not co-localized with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) which normally provide sufficient depolarization to relieve voltage-dependent blockade by Mg(2+). We used cerebellar granule neurons (CGNs) cultured at a near-physiological KCl concentration to examine maturation-dependent changes in NMDAR responses.

View Article and Find Full Text PDF

Traumatic brain injury affects over a million Americans annually, but pharmacological therapy remains limited. Current standards of care in acute, subacute and chronic phases of injury are primarily supportive. This review discusses pharmacological strategies and future directions in patient treatment emphasizing pleiotropic agents targeting inflammation, oxidative damage, and glutamate excitotoxicity.

View Article and Find Full Text PDF

Rat cerebellar granule neurons cultured in medium supplemented with elevated KCl are extensively used as a model to examine the coupling between neural activity and Ca(2+)-dependent gene expression. Elevated (25 mM) KCl is believed to mimic endogenous neural activity because it promotes depolarization and Ca(+2)-dependent survival and some aspects of maturation. By comparison, at least half of the granule neurons grown in standard medium containing 5 mM KCl undergo apoptosis beginning approximately 4 days in vitro.

View Article and Find Full Text PDF