Current methods for separating critical materials from feedstock solutions remain chemistry- and energy-intensive. We demonstrate the rapid extraction of a pure magnesium phase from seawater precipitation with sodium hydroxide in a flow-gel device. Our approach is scalable, suitable for high-throughput extraction, and does not rely on specialty chemicals.
View Article and Find Full Text PDFSurface passivation, a desirable natural consequence during initial oxidation of alloys, is the foundation for functioning of corrosion and oxidation resistant alloys ranging from industrial stainless steel to kitchen utensils. This initial oxidation has been long perceived to vary with crystal facet, however, the underlying mechanism remains elusive. Here, using in situ environmental transmission electron microscopy, we gain atomic details on crystal facet dependent initial oxidation behavior in a model Ni-5Cr alloy.
View Article and Find Full Text PDFCesium lead halide nanostructures have highly tunable optical and optoelectronic properties. Establishing precise control in forming perovskite single-crystal nanostructures is key to unlocking the full potential of these materials. However, studying the growth kinetics of colloidal cesium lead halides is challenging due to their sensitivity to light, electron beam, and environmental factors like humidity.
View Article and Find Full Text PDFMany important chemical processes involve reactivity and dynamics in complex solutions. Gaining a fundamental understanding of these reaction mechanisms is a challenging goal that requires advanced computational and experimental approaches. However, important techniques such as molecular simulation have limitations in terms of scales of time, length, and system complexity.
View Article and Find Full Text PDF