Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet.
View Article and Find Full Text PDFImproved laser illumination uniformity drives shocks and implosions to create more extreme high energy density environments. Predominantly, the geometry of experiments that can be performed is dictated by the layout of beams at laser facilities, limiting interfacility and multiscale investigations. This Letter presents the first automated, algorithmic approach for generating illumination configurations for high energy density experiments.
View Article and Find Full Text PDFWe report on an experimental observation of the streaking of betatron x rays in a curved laser wakefield accelerator. The streaking of the betatron x rays was realized by launching a laser pulse into a plasma with a transverse density gradient. By controlling the plasma density and the density gradient, we realized the steering of the laser driver, electron beam, and betatron x rays simultaneously.
View Article and Find Full Text PDFThe objective of this research was to evaluate the effects of two implant programs and differing days-on-feed (DOF) on net returns of beef feedlot heifers using sensitivity analyses of key economic factors. Crossbred beef heifers [ = 10,583; initial weight 315 kg (± 20.1 SD)] were enrolled across three trials (one Kansas, two Texas feedlot trials).
View Article and Find Full Text PDF