Publications by authors named "M L Saboungi"

Water-in-salt electrolytes have attracted considerable interest in the past decade for advanced lithium-ion batteries, possessing important advantages over the non-aqueous electrolytes currently in use. A battery with a LiTFSI-water electrolyte was demonstrated in which an operating window of 3 V is made possible by a solid-electrolyte interface. Viscosity is an important property for such electrolytes, because high viscosity is normally associated with low ionic conductivity.

View Article and Find Full Text PDF

A new class of electrolytes have been reported, hybridizing aqueous with non-aqueous solvents, which combines non-flammability and non-toxicity characteristics of aqueous electrolytes with the superior electrochemical stability of non-aqueous systems. Here, we report measurements of the structure of an electrolyte composed of an equal-mass mixture of 21 m LiTFSI-water and 9 m LiTFSI-dimethyl carbonate using high-energy x-ray diffraction and polarized neutron diffraction with isotope substitution. Neutron structure factors from partially and fully deuterated samples exhibit peaks at low scattering vector Q that we ascribe to long-range correlations involving both solvent molecules and TFSI anions.

View Article and Find Full Text PDF

We report a systematic diffraction study of two "water-in-salt" electrolytes and a "water-in-bisalt" electrolyte combining high-energy X-ray diffraction (HEXRD) with polarized and unpolarized neutron diffraction (ND) on both HO and DO solutions. The measurements provide three independent combinations of correlations between the different pairs of atom types that reveal the short- and intermediate-range order in considerable detail. The ND interference functions show pronounced peaks around a scattering vector ∼ 0.

View Article and Find Full Text PDF

"Water-in-salt" (WIS) and "water-in-bisalt" (WIBS) electrolytes have recently been developed for Li-ion batteries, combining the safety and environmental friendliness of aqueous electrolytes with a larger operating window made possible by a solid-electrolyte interphase. We report quasielastic neutron scattering (QENS) measurements on solutions of a WIS electrolyte at two concentrations, 13.9 and 21 (molal) lithium bis(trifluoromethane)sulfonimide LiTFSI in HO/DO and a WIBS electrolyte at (21 LiTFSI + 7 lithium triflate (LiOTf)) in HO/DO.

View Article and Find Full Text PDF

Neutron diffraction with isotopic substitution (NDIS) experiments were done on both natural abundance potassium and isotopically labeled KCl heavy water solutions to characterize the solvent structuring around the potassium ion in water. Preliminary measurements suggested that the literature value for the coherent neutron scattering length (2.69 fm) for K was significantly in error.

View Article and Find Full Text PDF