Fingerprint analysis is a ubiquitous tool for pattern recognition with applications spanning from geolocation and DNA analysis to facial recognition and forensic identification. Central to its utility is the ability to provide accurate identification without an a priori mathematical model for the pattern. We report a data-driven fingerprint approach for nanoelectromechanical systems mass spectrometry that enables mass measurements of particles and molecules using complex, uncharacterized nanoelectromechanical devices of arbitrary specification.
View Article and Find Full Text PDFThe advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins.
View Article and Find Full Text PDFNanoelectromechanical systems (NEMS)-based mass spectrometry (MS) is an emerging technique that enables determination of the mass of individual adsorbed particles by driving nanomechanical devices at resonance and monitoring the real-time changes in their resonance frequencies induced by each single molecule adsorption event. We incorporate NEMS into an Orbitrap mass spectrometer and report our progress towards leveraging the single-molecule capabilities of the NEMS to enhance the dynamic range of conventional MS instrumentation and to offer new capabilities for performing deep proteomic analysis of clinically relevant samples. We use the hybrid instrument to deliver E.
View Article and Find Full Text PDFRecent years have seen explosive growth in miniaturized sensors that can continuously monitor a wide variety of processes, with applications in healthcare, manufacturing, and environmental sensing. The time series generated by these sensors often involves abrupt jumps in the detected signal. One such application uses nanoelectromechanical systems (NEMS) for mass spectrometry, where analyte adsorption produces a quick but finite-time jump in the resonance frequencies of the sensor eigenmodes.
View Article and Find Full Text PDF