Publications by authors named "M L Rocci"

We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, , up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing .

View Article and Find Full Text PDF

The Josephson effect results from the coupling of two superconductors across a spacer such as an insulator, a normal metal or a ferromagnet to yield a phase coherent quantum state. However, in junctions with ferromagnetic spacers, very long-range Josephson effects have remained elusive. Here we demonstrate extremely long-range (micrometric) high-temperature (tens of kelvins) Josephson coupling across the half-metallic manganite LaSrMnO combined with the superconducting cuprate YBaCuO.

View Article and Find Full Text PDF

Significant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, we demonstrate an enhancement of up to 30% in critical current in a back-gate tunable NbN micro- and nano superconducting bridges. Our suggested plausible mechanism of this enhancement in critical current based on surface nucleation and pinning of Abrikosov vortices is consistent with expectations and observations for type-II superconductor films with thicknesses comparable to their coherence length.

View Article and Find Full Text PDF

Under standard conditions, the electrostatic field-effect is negligible in conventional metals and was expected to be completely ineffective also in superconducting metals. This common belief was recently put under question by a family of experiments that displayed full gate-voltage-induced suppression of critical current in superconducting all-metallic gated nanotransistors. To date, the microscopic origin of this phenomenon is under debate, and trivial explanations based on heating effects given by the negligible electron leakage from the gates should be excluded.

View Article and Find Full Text PDF

Objectives: To evaluate the biomechanical performance of the Femoral Neck System (FNS) versus the Hansson Pin System (Hansson Pins) with two parallel pins in a Pauwels II femoral neck fracture model with posterior comminution.

Methods: Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human femora, followed by instrumentation with either FNS or Hansson Pins in pair-matched fashion.

View Article and Find Full Text PDF