J Synchrotron Radiat
November 2002
Irradiation of proteins with intense X-ray radiation produced by third-generation synchrotron sources generates specific structural and chemical alterations, including breakage of disulfide bonds and decarboxylation. In this paper, disulfide bond lengths in irradiated crystals of the enzyme Torpedo californica acetylcholinesterase are examined based on quantum simulations and on experimental data published previously. The experimental data suggest that one disulfide bond elongates by approximately 0.
View Article and Find Full Text PDFJoint refinement, i.e., the simultaneous refinement of a structure against both nuclear magnetic resonance (NMR) spectroscopic and X-ray crystallographic data, was performed on the HU protein from Bacillus stearothermophilus (HUBst).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2000
Radiation damage is an inherent problem in x-ray crystallography. It usually is presumed to be nonspecific and manifested as a gradual decay in the overall quality of data obtained for a given crystal as data collection proceeds. Based on third-generation synchrotron x-ray data, collected at cryogenic temperatures, we show for the enzymes Torpedo californica acetylcholinesterase and hen egg white lysozyme that synchrotron radiation also can cause highly specific damage.
View Article and Find Full Text PDFThe completeness of experimentally observed NOE restraints of a set of 97 NMR protein structures deposited in the PDB has been assessed. Completeness is defined as the ratio of the number of experimentally observed NOEs and the number of 'expected NOEs'. A practical definition of 'expected NOEs' based on inter-proton distances in the structures up to a given cut-off distance is proposed.
View Article and Find Full Text PDFA statistical analysis is reported of 1,200 of the 1,404 nuclear magnetic resonance (NMR)-derived protein and nucleic acid structures deposited in the Protein Data Bank (PDB) before 1999. Excluded from this analysis were the entries not yet fully validated by the PDB and the more than 100 entries that contained < 95% of the expected hydrogens. The aim was to assess the geometry of the hydrogens in the remaining structures and to provide a check on their nomenclature.
View Article and Find Full Text PDF