Purpose: This study aimed to compare changes in the bone turnover markers (BTMs)-C-terminal telopeptide of type I collagen (CTX-I) and procollagen I N-terminal peptide (PINP)-with changes in the bone microarchitecture, assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), during treatment of patients with thyroid dysfunction.
Methods: In women with newly diagnosed hypo- or hyperthyroidism, HR-pQCT variables, obtained from the tibia and the radius, were compared with BTMs. Data were collected at diagnosis and after at least 12 months of euthyroidism.
Hyperthyroidism is associated with bone mass reduction and increased fracture risk, but the effects on other important bone parameters have been sparsely examined. Therefore, we investigated bone microarchitecture and estimated bone strength by high-resolution peripheral quantitative computed tomography (HR-pQCT) in hyperthyroid patients at diagnosis and after being euthyroid for at least one year. Two approaches were used: (A) a case-control study comparing 61 hyperthyroid women with 61 euthyroid women matched for age and menopause status; (B) a follow-up study, in which 46 of the 61 women were re-examined after having been euthyroid for one year.
View Article and Find Full Text PDFPurpose: Fracture risk in hypothyroid patients is debated, and since the effects of hypothyroidism on bone microarchitecture and strength are unclarified, we investigated these characteristics by high-resolution peripheral quantitative computed tomography (HR-pQCT).
Methods: Two approaches were used: a cross-sectional control study, comparing 32 hypothyroid women (mean age; 47 ± 12 years) suffering from Hashimoto's thyroiditis with 32 sex-, age-, and menopause-matched healthy controls; a prospective study, where 27 of the women were reexamined 1 year after restoration of euthyroidism. HR-pQCT of the distal radius and tibia, and dual-energy X-ray absorptiometry (DXA) of the spine and hip were performed.