Publications by authors named "M L Navarro Cabello"

Near-infrared (NIR) chemiluminescent probes have attracted increasing attention in recent years due to their attractive properties for imaging. Herein, we developed a NIR chemiluminophore silicon rhodamine (SiRCL-1) based on the intramolecular energy transfer process from excited state benzoate to a silicon rhodamine emitter under aqueous conditions. SiRCL-1 exhibited dual emission peaks at 540 nm and 680 nm with a high signal penetration through tissue at 680 nm (>30 mm) and long-lasting luminescence (>50 min), demonstrating its significance as a chemiluminescence scaffold for biological application.

View Article and Find Full Text PDF

Water decreases the brightness of the peroxyoxalate chemiluminescence partially due to the hydrolysis of the oxalate reagent. Here, we show that encapsulation of an oxalate ester and the fluorescent activator in microspheres of cellulose esters increases the emission intensity 30 times compared to the same reaction in water without encapsulation, whereas the emission intensity decay rate constants are considerably lower. Emission intensities, rate constants and chemiluminescence quantum yields increase with increasing hydrogen peroxide concentrations.

View Article and Find Full Text PDF

Environmental impacts and resource availability are significant concerns for the future of lithium-ion batteries. This study focuses on developing novel fluorine-free electrolytes compatible with aqueous-processed cobalt-free cathode materials. The new electrolyte contains lithium 1,1,2,3,3-pentacyanopropenide (LiPCP) salt.

View Article and Find Full Text PDF

Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals.

View Article and Find Full Text PDF

Introduction: Multi-carbapenemase-producing Enterobacterales (M-CPE) are increasingly described. We characterized the M-CPE isolates prospectively recovered in our hospital (Madrid, Spain) over two years (2021-2022).

Methods: We collected 796 carbapenem resistant Enterobacterales (CRE) from clinical and surveillance samples.

View Article and Find Full Text PDF