Publications by authors named "M L Mole"

Seagrasses are undergoing widespread loss due to anthropogenic pressure and climate change. Since 1960, the Mediterranean seascape lost 13-50% of the areal extent of its dominant and endemic seagrass-Posidonia oceanica, which regulates its ecosystem. Many conservation and restoration projects failed due to poor site selection and lack of long-term monitoring.

View Article and Find Full Text PDF

Zippering is a phenomenon of tissue morphogenesis whereby fusion between opposing epithelia progresses unidirectionally over significant distances, similar to the travel of a zip fastener, to ultimately ensure closure of an opening. A comparable process can be observed during Drosophila dorsal closure and mammalian wound healing, while zippering is employed by numerous organs such as the optic fissure, palatal shelves, tracheoesophageal foregut, and presumptive genitalia to mediate tissue sealing during normal embryonic development. Particularly striking is zippering propagation during neural tube morphogenesis, where the fusion point travels extensively along the embryonic axis to ensure closure of the neural tube.

View Article and Find Full Text PDF

Objective: Male hypogonadism is poorly characterized in young-to-middle-aged people with HIV (PWH). We used a reliable free testosterone assay to assess the prevalence and predictive factors for male hypogonadism in PWH on effective combined antiretroviral therapy (cART).

Design: A French cross-sectional study from January 2013 to June 2016.

View Article and Find Full Text PDF

Planar cell polarity (PCP) signalling is vital for initiation of mouse neurulation, with diminished convergent extension (CE) cell movements leading to craniorachischisis, a severe neural tube defect (NTD). Some humans with NTDs also have PCP gene mutations but these are heterozygous, not homozygous as in mice. Other genetic or environmental factors may interact with partial loss of PCP function in human NTDs.

View Article and Find Full Text PDF

Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown.

View Article and Find Full Text PDF