Publications by authors named "M L McBride"

Objectives: Uterine adenomyosis is a common gynaecological disease that can be debilitating. It is poorly understood and may be overlooked in clinical settings. A research gap exists as there are currently no published scoping reviews on perceptions and experiences early in the illness course.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Background: All for Them is a theory-based and evidence-informed multilevel, multicomponent program delivered through schools to increase HPV vaccination among medically underserved youth across Texas. Given the potential logistical challenges of program implementation, understanding how to best support the implementation and sustainment of the program is critical. The overall goals of this study are twofold: 1) develop a multifaceted implementation strategy, Implementing All for Them (IM-AFT); and 2) evaluate the impact of IM-AFT on implementation outcomes for schools and healthcare providers to successfully implement All for Them in their respective settings.

View Article and Find Full Text PDF

Aging significantly increases the incidence and severity of infections, with individuals aged 65 and above accounting for 65% of sepsis cases. Innate immune training, known as "trained immunity" or "innate immune memory", has emerged as a potential strategy to enhance infection resistance by modulating the aging immune system. We investigated the impact of β-glucan-induced trained immunity on aged mice (18-20 months old) compared to young adult mice (10-12 weeks old).

View Article and Find Full Text PDF

Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals.

View Article and Find Full Text PDF