Publications by authors named "M L Maurice Mannesse"

C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences.

View Article and Find Full Text PDF

Background And Objective: Recombinant human C1-inhibitor (rhC1INH) is used to treat acute angioedema attacks in hereditary angioedema (HAE) due to a genetic C1INH deficiency. Recombinant proteins in general may induce antibody responses and therefore evaluation of such responses in the target population is an essential step in the clinical development program of a recombinant protein. Here we report the assessment of the immunogenicity of rhC1INH in symptomatic HAE patients.

View Article and Find Full Text PDF

Ischemia-reperfusion injury is the major cause of delayed graft function in transplanted kidneys, an early event significantly affecting long-term graft function and survival. Several studies in rodents suggest that the alternative pathway of the complement system plays a pivotal role in renal ischemia-reperfusion injury. However, limited information is currently available from humans and larger animals.

View Article and Find Full Text PDF

Objective: C1 inhibitor (C1-INH) is an endogenous inhibitor of complement and kinin systems. We have explored the efficacy and the therapeutic window of the recently available human recombinant (rh) C1-INH on ischemic brain injury and investigated its mechanism of action in comparison with that of plasma-derived (pd) C1-INH.

Methods: rhC1-INH was administered intravenously to C57Bl/6 mice undergoing transient or permanent ischemia, and its protective effects were evaluated by measuring infarct volume and neurodegeneration.

View Article and Find Full Text PDF

Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme.

View Article and Find Full Text PDF