Publications by authors named "M L Line"

Article Synopsis
  • HD 189733b is a key exoplanet for studying atmospheres, providing insights into composition, chemistry, and atmospheric dynamics.
  • Previous studies identified molecules like HO and CO in its atmosphere, but some findings about methane have been disputed.
  • Recent observations detect HO, CO, and HS, leading to an inferred atmosphere metallicity three to five times that of its star, suggesting formation from water-rich icy planetesimals.
View Article and Find Full Text PDF

Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly HO (ref. ).

View Article and Find Full Text PDF

The recent inference of sulfur dioxide (SO) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations suggests that photochemistry is a key process in high-temperature exoplanet atmospheres. This is because of the low (<1 ppb) abundance of SO under thermochemical equilibrium compared with that produced from the photochemistry of HO and HS (1-10 ppm). However, the SO inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.

View Article and Find Full Text PDF

The abundances of main carbon- and oxygen-bearing gases in the atmospheres of giant exoplanets provide insights into atmospheric chemistry and planet formation processes. Thermochemistry suggests that methane (CH) should be the dominant carbon-bearing species below about 1,000 K over a range of plausible atmospheric compositions; this is the case for the solar system planets and has been confirmed in the atmospheres of brown dwarfs and self-luminous, directly imaged exoplanets. However, CH has not yet been definitively detected with space-based spectroscopy in the atmosphere of a transiting exoplanet, but a few detections have been made with ground-based, high-resolution transit spectroscopy including a tentative detection for WASP-80b (ref.

View Article and Find Full Text PDF

Close-in giant exoplanets with temperatures greater than 2,000 K ('ultra-hot Jupiters') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on the JWST.

View Article and Find Full Text PDF