Publications by authors named "M L Labat"

Relativistic electron bunches used to produce synchrotron radiation are systematically subjected to spontaneous appearance of microstructures, when a high number of electrons are used. In storage rings, this usually leads to an intense coherent emission in the terahetz range, with powers that are orders of magnitude higher than standard incoherent emission. However this emission generally displays an erratic behavior, which has strongly limited its domain of application so far.

View Article and Find Full Text PDF

This paper presents the first implementation of a coupling between advanced wavefunction theories and molecular density functional theory (MDFT). This method enables the modeling of solvent effect into quantum mechanical (QM) calculations by incorporating an electrostatic potential generated by solvent charges into the electronic Hamiltonian. Solvent charges are deduced from the spatially and angularly dependent solvent particle density.

View Article and Find Full Text PDF

Synchrotron radiation (SR) from bending magnets, wigglers, and undulators is now extensively produced for users at storage ring based light sources, with unique properties in terms of average brightness and stability. We present a profound study of bending magnet SR intensity distribution in the image plane of a focusing optical system. Measurements of this intensity distribution at the MAX-IV low emittance storage ring are compared to theoretical predictions, and found to be in excellent agreement.

View Article and Find Full Text PDF

In August 2021, the SOLEIL storage ring was restarted after the summer shutdown with a new bending magnet made entirely of permanent magnets. Producing a magnetic field of 2.8 T, it replaced one of the 32 electromagnetic dipoles (magnetic field of 1.

View Article and Find Full Text PDF

A novel thermophilic, anaerobic bacterium, strain F1F22, was isolated from hot spring water collected in northern Tunisia. The cells were non-motile, Gram-negative and helical with hooked ends, 0.5×10-32 µm in size.

View Article and Find Full Text PDF