Corneal scarring, a significant cause of global blindness, results from various insults, including trauma, infections, and genetic disorders. The conventional treatment to replace scarred corneal tissues includes partial or full-thickness corneal transplantation using healthy donor corneas. However, only 1 in 70 individuals with treatable corneal scarring can undergo surgery, due to the limited supply of transplantable donor tissue.
View Article and Find Full Text PDFThe challenge of treating corneal scarring through keratoplasties lies in the limited availability of donor tissue. Various studies have shown the therapeutic use of cultivated corneal stromal stem cells (CSSCs) to mitigate tissue inflammation and suppress fibrosis and scar tissue formation in preclinical corneal wound models. To develop CSSC therapy for clinical trials on patients with corneal scarring, it is necessary to generate clinical-grade CSSCs in compliant to Good Manufacturing Practice (GMP) regulations.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells in the adult corneal stroma (named corneal stromal stem cells, CSSCs) inhibit corneal inflammation and scarring and restore corneal clarity in pre-clinical corneal injury models. This cell therapy could alleviate the heavy reliance on donor materials for corneal transplantation to treat corneal opacities. Herein, we established Good Manufacturing Practice (GMP) protocols for CSSC isolation, propagation, and cryostorage, and developed in vitro quality control (QC) metric for in vivo anti-scarring potency of CSSCs in treating corneal opacities.
View Article and Find Full Text PDFIn addition to their therapeutic potential in regenerative medicine, human corneal stromal stem cells (CSSCs) could serve as a powerful tool for drug discovery and development. Variations from different donors, their isolation method, and their limited life span in culture hinder the utility of primary human CSSCs. To address these limitations, this study aims to establish and characterize immortalized CSSC lines (imCSSC) generated from primary human CSSCs.
View Article and Find Full Text PDFIntroduction: Corneal blindness due to scarring is treated with corneal transplantation. However, a global problem is the donor material shortage. Preclinical and clinical studies have shown that cell-based therapy using corneal stromal stem cells (CSSCs) suppresses corneal scarring, potentially mediated by specific microRNAs transported in extracellular vesicles (EVs).
View Article and Find Full Text PDF