Publications by authors named "M L Espinas"

Unveiling the molecular mechanisms of receptor activation has led to much understanding of development as well as the identification of important drug targets. We use the Drosophila tracheal system to study the activity of two families of widely used and conserved receptors, the TNFRs and the RTK-FGFRs. Breathless, an FGFR, controls the program of differentiation of the tracheal terminal cells in response to ligand activation.

View Article and Find Full Text PDF

Chitin is a highly abundant polymer in nature and a principal component of apical extracellular matrices in insects. In addition, chitin has proved to be an excellent biomaterial with multiple applications. In spite of its importance, the molecular mechanisms of chitin biosynthesis and chitin structural diversity are not fully elucidated yet.

View Article and Find Full Text PDF

Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase.

View Article and Find Full Text PDF

The steroid hormone ecdysone is a central regulator of insect development. In this report we show that CTCF expression in the prothoracic gland is required for full transcriptional activation of the Halloween genes spookier, shadow and noppera-bo, which encode ecdysone biosynthetic enzymes, and for proper timing of ecdysone-responsive gene expression. Loss of CTCF results in delayed and less synchronized larval development that can only be rescued by feeding larvae with both, the steroid hormone 20-hydroxyecdysone and cholesterol.

View Article and Find Full Text PDF

Insulators are DNA-protein complexes that play a central role in chromatin organization and regulation of gene expression. In Drosophila different proteins, dCTCF, Su(Hw), and BEAF bind to specific subsets of insulators most of them having in common CP190. It has been shown that there are a number of CP190-binding sites that are not shared with any other known insulator protein, suggesting that other proteins could cooperate with CP190 to regulate insulator activity.

View Article and Find Full Text PDF