Microparticles of Celecoxib, dispersed in a matrix of poly(lactic-co-glycolic acid) (PLGA), were prepared by electrospraying using different solvent mixtures to investigate the influence upon particle formation and the resulting particle characteristics. Mixtures consisting of a good solvent, acetone, and an anti-solvent, methanol, for PLGA were studied in different ratios. Properties of the spraying solutions were examined and the resulting microparticles were characterized with regard to size, morphology, porosity, solid state form, surface chemistry and drug release.
View Article and Find Full Text PDFPoly(lactic-co-glycolic acid) (PLGA) microspheres containing celecoxib were prepared via electrospraying, and the influence of three processing parameters namely flow rate, solute concentration and drug loading, on the physico-chemical properties of the particles and the drug-release profile was studied. Microspheres with diameters between 2 and 8 μm were produced and a near-monodisperse size distribution was achieved (polydispersivity indices of 6-12%). Further, the inner structure of the particles showed that the internal porosity of the particles increased with increasing solvent concentration.
View Article and Find Full Text PDFMicro- and nanoparticle formulations are widely used to improve the bioavailability of low solubility drugs. In this study, electrospraying is introduced as a method for producing drug-loaded microspheres at ambient conditions. PLGA microspheres containing celecoxib, a low solubility drug, were prepared with the objective of producing near-monodisperse microspheres with the drug in a stable amorphous form.
View Article and Find Full Text PDFThe process of discovering and developing new drugs is long, costly and risk-laden. Faced with a wealth of newly discovered compounds, industrial scientists need to target resources carefully to discern the key attributes of a drug candidate and to make informed decisions. Here, we describe a quantitative approach to modelling the risk associated with drug development as a tool for scenario analysis concerning the probability of success of a compound as a potential pharmaceutical agent.
View Article and Find Full Text PDFThe uptake of intravascular [123I]isopropyliodoamphetamine (IMP) and 99mTc-pertechnetate into choroid plexus (CP) and brain (frontal cortex) was studied by an indicator fractionation method applied to immature, ketamine-anesthetized Sprague-Dawley rats (1.5, 2, and 3 wk). Assessment of the rate and extent of uptake of these indicators provides functional information (eg blood flow; transport) about various regions of the developing CNS.
View Article and Find Full Text PDF