Publications by authors named "M L Danos"

This study investigated the effects of stimulus presentation modality on working memory performance in elementary school-age children ages 7-13. The experimental paradigm implemented a multitrial learning task incorporating three presentation modalities: Auditory, Visual, and simultaneous Auditory plus Visual. The first experiment compared the learning and memory performance of older and younger elementary school children.

View Article and Find Full Text PDF

Cardiolipin (CL) is a major mitochondrial membrane phospholipid in the mammalian heart and the remodeling of CL is essential to maintain its unique unsaturated fatty acyl composition. We examined CL de novo biosynthesis and remodeling in the surviving population of H9c2 cardiac myoblast cells exposed to 2-deoxyglucose (2-DG). H9c2 cells were incubated in the absence or presence of 2-DG for 16 h with [1,3-3H]glycerol or [1-14C]linoleic acid (bound to albumin in a 1:1 molar ratio).

View Article and Find Full Text PDF

Ena/VASP proteins are actin-binding proteins implicated in the regulation of axon guidance, platelet aggregation, cell motility, and cell adhesion. The vertebrate Ena/VASP family is comprised of three genes: Ena (Enabled), VASP (Vasodilator Stimulated Phosphoprotein), and Evl (Ena/VASP-Like). We have cloned and characterized cDNAs encoding three alternatively spliced isoforms of Xenopus laevis Evl, designated Xevl, Xevl-I and Xevl-H.

View Article and Find Full Text PDF

Transforming growth factor beta (TGF-beta)-activated kinase 1 (TAK1) is a member of the MAPKKK superfamily and has been characterized as a component of the TGF-beta/bone morphogenetic protein signaling pathway. TAK1 function has been extensively studied in cultured cells, but its in vivo function is not fully understood. In this study, we isolated a Drosophila homolog of TAK1 (dTAK1) which contains an extensively conserved NH(2)-terminal kinase domain and a partially conserved COOH-terminal domain.

View Article and Find Full Text PDF

Vertebrate species display consistent left-right asymmetry in the arrangement of their internal organs. This asymmetry reflects the establishment of the left-right axis and the alignment of the organs along this axis during development. Members of the TGF-beta family of molecules have been implicated in both the establishment and signaling of left-right axis information.

View Article and Find Full Text PDF