As the energy density of lithium-ion batteries (LIBs) increases, the shortened cycle life and the increased safety hazards of LIBs are drawing increasing concerns. To address such challenges, a series of localized high-concentration electrolytes (LHCEs) based on a solvating-solvent mixture of tetramethylene sulfone and trimethyl phosphate and a high flash-point diluent 1H,1H,5H-octafluoropentyl 1,1,2,2-tetrafluoroethyl ether were designed. The LHCEs exhibited nonflammability and greatly suppressed heat release at elevated temperatures, which would potentially improve the safety performance of the LIBs.
View Article and Find Full Text PDFCharge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.
View Article and Find Full Text PDFJ Acute Care Phys Ther
July 2024
Background: The purpose of this pilot trial was to evaluate the impact of increased frequency of physical therapy sessions with error augmentation on functional mobility and disability outcomes in patients with acute stroke. We hypothesized that participants receiving frequent error augmentation physical therapy interventions (F-EA-PT) would demonstrate a higher degree of improvement on functional mobility and disability measures from admission to three post-intervention time points (treatment day 3, discharge, or 90-day follow-up).
Methods: We allocated 100 individuals to receive either F-EA-PT or standard-of-care physical therapy (SOC-PT).
Understanding how doping influences physicochemical properties of ABO perovskite oxides is critical for tailoring their functionalities. In this study, SrFeCrO epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface.
View Article and Find Full Text PDF