One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon gamma receptor (IFN-gammaR), whereas Th1 cells do not express the second chain of the IFN-gammaR (IFN-gammaR2) and are therefore unresponsive to IFN-gamma. To determine whether the regulation of IFN-gammaR2 expression, and therefore IFN-gamma responsiveness, is important for the differentiation of naive CD4(+) T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-gammaR2 is controlled by the CD2 promoter and enhancer.
View Article and Find Full Text PDFThe BCL-6 proto-oncogene encodes a POZ/zinc-finger transcription factor that is expressed in B cells and a subset of CD4(+) T cells within germinal centers. Recent evidence suggests that BCL-6 can act as a sequence-specific repressor of transcription, but the target genes for this activity have not yet been identified. The binding site for BCL-6 shares striking homology to the sites that are the target sequence for the interleukin-4 (IL-4)-induced Stat6 (signal transducers and activators of transcription) signaling molecule.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 1998
To study the role of the interferon- (IFN) gammaR2 chain in IFN-gamma signaling and immune function, IFN-gammaR2-deficient mice have been generated and characterized. Cells derived from IFN-gammaR2 -/- mice are unable to activate either JAK/STAT signaling proteins or gene transcription in response to IFN-gamma. The lack of IFN-gamma responsiveness alters IFN-gamma-induced Ig class switching by B cells from these mice.
View Article and Find Full Text PDF